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Abstract

In this thesis the Central configuration of an isosceles trapezoid for 5 body is dis-

cussed. We also analyzed the motion of infinitesimal body m6 in the gravitational

field of 5 massive bodies m1−m5. We obtained different equilibrium points rang-

ing between 6− 8. Maximum equilibrium points are unstable but couple of stable

equilibrium points exist in each case. Interestingly, all stable points are along the

y-axis on or off the isosceles trapezoid. There are no equilibrium points off the

coordinate axes and along x-axis.
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Chapter 1

Introduction

In mechanics the n-body problem is the problem in which the motion of individ-

ual has been predicted in the group of celestial bodies related with each other

gravitationally. Solution of this problem is the desire and need to understand the

motion of sun, moon and the other stars. Newton in 1687 gave the idea of n-body

problem [1]. Moreover by using his universal law of gravity Newton solved two

body problem but for n ≥ 3 it has no significant solution. In the last few centuries,

astronomers and mathematicians have continued work on the n-body problems.

Angel and Gabern [2] worked on 4 and 5 body problems in which they focused on

the motion of a small particle nearby Lagrangian point in Jupiter and Sun system.

Roy and Steves [3] introduced the restricted 4-body problem which was the in-

termediate step in the exploitation of three dimensional 4-body problem. Mather

and Mcgehee [4] studied the 4-body and found the existence of the solutions of

collinear 4-body problem in which they considered four masses on a straight line

using inverse square law.

Central configurations (CCs) [5] is a special form of adjustment of point masses

attracting each other by Newton’s gravity law with the following property the

gravitational acceleration vector produced by all others on each mass should point

to each other toward the center of mass and proportional to the distance to the

center of mass. (CC’s) of 3 and 4-body problem is very old and basic problem in

celestial mechanics. The configurations in which the Newtonian acceleration on

1



Introduction 2

body is taken equal to the position vector of that body multiplied by a constant

with respect to the center of mass of that body.

In the study of few body problem the (CC’s) is counted in one of the fundamental

and important topic. Therefore, in particular few-body problems in central and

general configurations have received a lot of attention of researchers over the years.

For n ≥ 4 due to the complexity of problems containing greater number of bodies

the study on the (CC’s) of n-body problem is limited. In the available literature

the main focus for n ≥ 4 is on the restricted problems. This open a ground for the

study of the (CC’s) 5-body problem. In the present work we study the (CC’s) gen-

eralized collinear 4 and 5-body problems. In addition, we also answer the motion

of test mass in the five main gravitational fields. We also investigate the position

of equilibrium points of test mass or stability of these points.

Several methods are used to study the few body problems. For example, March-

esin [6] studied the restricted rhomboidal 5-body problems and stability of its

periodic solutions. Roberts [7] examined the relative equilibria in 5 body problem

which contain four bodies (m1,m2,m3,m4) = (1, 1, 1, 1) taken at the vertices of a

quadrilateral (rumbas) with equal masses at the opposite vertices and remaining

at the center. Josep et al. [8] studied the (CC’s) of m + 1 bodies in which one

mass is considered large and other masses are taken infinitesimal. Xia [9] used the

analytical continuation method to study the (CC’s) with small masses and they

found exact number of (CC’s) for some sets of n masses. Albouy [10] studied the

relation between geometrical properties of (CC’s) and the masses and proved that

in a four body problem in plane if they place equal masses of particles on one

diagonal then the convex (CC’s) is symmetric with respect to other diagonal.



Chapter 2

Preliminaries

This chapter contains some important definitions, concepts, governing laws which

are essential to understand the work presented in next chapters.

2.1 Basic Definitions

2.1.1 Motion [11]

“Motion is the action used to change the location or position of an object with

respect to the surroundings over time.”

2.1.2 Mechanics [11]

“Mechanics is a branch of physics concerned with motion or change in position of

physical objects. It is sometimes further subdivided into:

1. Kinematics, which is concerned with the geometry of the motion,

2. Dynamics, which is concerned with the physical causes of the motion,

3. Statics, which is concerned with conditions under which no motion is

apparent.”

3



Preliminaries 4

2.1.3 Scalar [11]

“Various quantities of physics, such as length, mass and time, requires for their

specification a single real number (apart from units of measurement which are

decided upon in advance). Such quantities are called Scalars and the real number

is called the magnitude of the quantity.”

2.1.4 Vector [11]

“Other quantities of physics, such as displacement, velocity, momentum, force etc

require for their specification a direction as well as magnitude. Such quantities

are called Vectors.”

2.1.5 Field [11]

“A field is a physical quantity associated with every point of spacetime. The

physical quantity may be either in vector form, scalar form or tensor form.”

2.1.6 Scalar Field [11]

“If at every point in a region, a scalar function has a defined value, the region is

called a scalar field. i.e.,

f : R3 → R,

e.g. temperature and pressure fields around the earth.”

2.1.7 Vector Field [11]

“If at every point in a region, a vector function has a defined value, the region is

called a vector field.



Preliminaries 5

V : R3 → R3,

e.g. tangent vector around a smooth curve.”

2.1.8 Conservative Vector Field [11]

“A vector field V is conservative if and only if there exists a continuously differ-

entiable scalar field f such that V = −∇f or equivalently if and only if

∇×V = CurlV = 0.”

2.1.9 Uniform Force Field [11]

“A force field which has constant magnitude and direction is called a uniform or

constant force field. If the direction of the field is taken as negative z direction

and magnitude is constant F0 > 0, then the force field is given by

F = −F0k̂.”

2.1.10 Central Force [11]

“Suppose that a force acting on a particle of mass m such that

(a) it is always directed from m toward or away from a fixed point O,

(b) its magnitude depends only on the distance r from O.

then we call the force a central force or central force field with O as the center of

force. In symbols F is a central force if and only if

F = f(r)r1 = f(r)r
r
,

where r1 = r
r

is a unit vector in the direction of r. The central force is one

of attraction towards O or repulsion from O according as f(r) < 0 or f(r) > 0

respectively.”
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2.1.11 Degree of Freedom [11]

“The number of coordinates required to specify the position of a system of one or

more particles is called number of degree of freedom of the system.

Example: A particle moving freely in space requires 3 coordinates, e.g. (x, y, z),

to specify its position. Thus the number of degree of freedom is 3.”

2.1.12 Center of Mass [11]

“Let r1, r2, ..., rn be the position vector of a system of n particles of masses

m1,m2, ...mn respectively. The center of mass or centroid of the system of particles

is defined as that point having position vector

r̂ =
m1r1 +m2r2 + ...+mnrn

m1 +m2 + ...+mn

=
1

M

n∑
ν=1

mνrν ,

where

M =
n∑
ν=1

mν ,

is the total mass of the system.”

2.1.13 Center of Gravity [11]

“If a system of particles is in a uniform gravitational field, the center of mass is

sometimes called the center of gravity.”

2.1.14 Torque [11]

“If a particle with a position vector r moves in a force field F, we define τ as

torque or moment of the force as
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τ = r× F.

The magnitude of τ is

τ = rF sin θ.

The magnitude of torque is a measure of the turning effect produced on the particle

by the force.”

2.1.15 Momentum [11]

“The linear momentum p of an object with mass m and velocity v is defined as:

p = mv.

Under certain circumstances the linear momentum of a system is conserved. The

linear momentum of a particle is related to the net force acting on that object:

F = ma = m
dv

dt
=

d

dt
(mv) =

dp

dt
.

The rate of change of linear momentum of a particle is equal to the net force

acting on the object, and is pointed in the direction of the force. If the net force

acting on an object is zero, its linear momentum is constant (conservation of linear

momentum). The total linear momentum p of a system of particles is defined as

the vector sum of the individual linear momentum.

p =
n∑
1

pi.”

2.1.16 Point-like Particle [11]

“A point-like particle is an idealization of particles mostly used in different fields of

physics. Its defining features is the lacks of spatial extension:being zero-dimensional,

it does not take up space. A point-like particle is an appropriate representation
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of an object whose structure, size and shape is irrelevant in a given context. e.g.,

from far away, a finite-size mass (object) will look like a point-like particle.”

2.1.17 Angular Momentum [11]

“Angular momentum for a point-like particle of mass m with linear momentum p

about a point O, defined by the equation

L = r× p,

where r is the vector from the point O to the particle. The torque about the point

O acting on the particle is equal to the rate of change of the angular momentum

about the point O of the particle i.e.,

τ =
dL

dt
.”

2.1.18 Lorentz Transformation [11]

“Lorentz transformation is the relationship between two different coordinate frames

that move at a constant velocity and are relative to each other. The name of the

transformation comes from a Dutch physicist Hendrik Lorentz. There are two

frames of reference, which are”

2.1.18.1 Inertial Frame of Reference

“A frame of reference that remains at rest or moves with constant velocity with

respect to other frames of reference is called inertial frame of reference. Actually,

an unaccelerated frame of reference is an inertial frame of reference. In this frame

of reference a body does not acted upon by external forces. Newton’s laws of

motion are valid in all inertial frames of reference. All inertial frames of reference

are equivalent.”
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2.1.18.2 Non-Inertial Frame of Reference

“A non-inertial reference frame is a frame of reference that is undergoing accelera-

tion with respect to an inertial frame. While the laws of motion are the same in all

inertial frames, in non-inertial frames, they vary from frame to frame depending

on the acceleration.”

2.1.19 Lagrange Points [11]

“A point in space where a small body with negligible mass under the gravitational

influence of two large bodies will remain at rest relative to the larger ones. These

points are locations in an orbital arrangement of two large bodies where a third

smaller body, affected solely by gravity, is capable of maintaining a stable position

relative to the two larger bodies. A lagrange point is also known as a equilibrium

point and Liberation point named after a French mathematician and atronomer

Joseph-Louis Lagrange. He was first to find these equlibrium points for the earth,

sun, and moon system. He found five points out of these three are collinear.”

2.1.20 Equilibrium Solution [11]

“The Equilibrium solution can guide us through the behavior of the equation

that represents the problem without actually solving it. These solutions can be

found only if we meet the sufficient condition of all rates equal to zero. If we have

two variables then

ẋ = ẏ = ẍ = ÿ = ... = x(n) = y(n) = 0.

These solutions may be stable or unstable. The stable solutions regarding in

celestial Mechanics helps us find parking spaces where if a satellite or any object

placed, it will remain there for ever. These type of places are also found along the

Jupiter’s orbital path where bodies called trojan are present. These equilibrium

points with respect to Celestial Mechanics are also called Lagrange points named
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after a French mathematician and astronomer Joseph-Louis Lagrange. He was

first to find these equilibrium points for the Sun-Earth system. He found that

three of these five points were collinear.”

2.1.21 Holonomic and non holonomic Constraints [11]

“In classical mechanics, a constraint on a system is a parameter that the system

must obey. The limitation on the motion are often called constraints. If the

constraints condition can be expressed as an equation,

φ(r1, r2, ...rn, t) = 0,

connecting the position vector of the particles and the time, then the constraints

are called holonomic, otherwise non-holonomic.”

2.1.22 Basin of Attraction [11]

“Newton method is used to find the roots of equations but Arthur Cayley found

that if the roots of a function are already know then Newton’s method can guide

to another problem that is which initial guesses iterate to which roots and the

region of these initial guesses is called basins of attraction of the roots.”

2.1.23 Galilean Transformation [11]

“In physics, a Galilean transformation is used to transform between the coordi-

nates of two reference frames which differ only by constant relative motion within

the constructs of Newtonian physics. Without the translations in space and time

the group is the homogeneous Galilean group. Galilean transformations, also

called Newtonian transformations, set of equations in classical physics that re-

late the space and time coordinates of two systems moving at a constant velocity

relative to each other.”
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2.1.24 Celestial Mechanics[11]

“Celestial mechanics is the branch of astronomy that deals with the motions of

objects in outer space. Historically, celestial mechanics applies principles of physics

(classical mechanics) to astronomical objects, such as stars and planets, to produce

ephemeris data. Actually celestial mechanics is the science devoted to the study

of the motion of the celestial bodies on the basis of the laws of gravitation. It was

founded by Newton and it is the oldest of the chapters of Physical Astronomy.”

2.1.25 Kepler’s Laws of Planetary Motion [11]

“Kepler’s three laws of planetary motion can be described as follows:

1. . Keplers first law states that every planet moves along an ellipse, with the

Sun located at a focus of the ellipse. An ellipse is defined as the set of all

points such that the sum of the distance from each point to two foci is a

constant.

2. Keplers second law states that a planet moves in its ellipse so that the line

between it and the Sun placed at a focus sweeps out equal areas in equal

times.

3. The cube of the semi major axis of the planetary orbits are proportional

to the square of the planets periods of revolution. Mathematically, Kepler’s

third law can be written as:

T 2 =

(
4π2

GMs

)
r3,

where T is the time period, r is the semi major axis, Ms is the mass of sun

and G is the universal gravitational constant.”
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2.1.26 Procedure for Stability Analysis and Equilibrium

Points

We need to follow the following steps to check the stability of

equilibrium points [11].

1. “Determine the equilibrium points, x∗, solving Ω(x∗) = 0.

2. Construct the Jacobian matrix, J(x∗) = ∂Ω
∂x
.

3. Compute eigenvalues of Ω(x∗): det|Ω(x∗)− λ I| = 0.

4. Stability or instability of x∗ based on the real parts of eigenvalues.

5. Point is stable, if all eigenvalues have real parts negative.

6. Unstable, if at least one of the eigenvalues have a real part greater than zero.

7. Otherwise, there is no conclusion, (i.e, require an investigation of higher

order terms).”

2.1.27 Newton’s Laws of Motion [11]

“The following three laws of motion given by Newton are considered the axioms

of mechanics:

1. First Law of Motion

Every particle persists in a state of rest or of uniform motion in a straight

line unless acted upon by a force.

2. Second Law of Motion

If F is the external force acting on a particle of mass m which as a reaction

is moving with velocity v, then

F =
d

dt
(mv) =

dP

dt
.



Preliminaries 13

If m is independent of time this becomes

F = m
dv

dt
= ma,

where a is the acceleration of the particle.

3. Third Law of Motion

For every action, there is an equal and opposite reaction.”

2.1.28 Newton’s Universal Law of Gravitation [11]

“Every particle of matter in the universe attracts every other particle of matter

with a force which is directly proportional to the product of the masses and in-

versely proportional to the square of the distance between them. Hence, for any

two particles separated by a distance r, the magnitude of the gravitational force

F is:

F = G
m1m2

r3
r

where G is universal gravitational constant. Its numerical value in SI units is

6.67408× 10−11m3kg−1s−2.”

2.2 Two Body Problem [12]

“The two-body problem, first studied and resolved by Newton, states: Suppose

that t is given at some time the positions and velocities of two heavy bodies mov-

ing under their mutual gravitational force, then what should be their location and

velocity t at any other time, if the masses are known.”

Earth circling around a sun, two stars circling around each other, orbiting a satel-

lite, for instance. Because of the facts below, the 2BP problem is most important.

1. In celestial mechanics, it is the only gravity problem, apart from very limited

solutions to the 3BP for which I have a detailed and a suitable solution.
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2. A large scope of realistic elliptic motion issues can be viewed as approxi-

mately 2BP.

3. In order to provide approximate orbital parameters and forecasts, the two-

body solution may be used or deliver as a initial point for producing analyt-

ical solutions that are accurate for higher precision orders.

2.3 The Solution to the Two-Body Problem [13]

“Newton’s universal gravitational law is the governing law for the two bodies:

F = G
m1m2

d3
d, (2.1)

For two masses, m1 and m2 are separated by a d distance, and the universal

gravitational constant is G.”

The purpose here is to decide if the initial locations and velocities are known, the

direction of the particles for some time t. The force of attraction F12 in Figure

2.1 is directed towards m1 along d, while the force F21 on m2 is directed in the

opposite direction. According to Newton’s third law of motion,

F12 = −F21. (2.2)

From Figure 2.1,

F12 = G
m1m2

d3
d. (2.3)

Particles under their gravity equations are given by (2.1) and (2.2) respectively,

contributing Newton’s 2nd law and by equations (2.1) and (2.2).

m1d̈1 = G
m1m2

d3
d, (2.4)

and,

m2d̈2 = −Gm1m2

d3
d, (2.5)
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Figure 2.1: Center of mass

Where the location vectors d1 and d2 are from the position point O, as shown in

Figure 2.1. When the equations (2.4) and (2.5) are applied, we obtained:

m1d̈1 +m2d̈2 = 0. (2.6)

The integration of the equations above yields:

m1ḋ1 +m2ḋ2 = k1, (2.7)

The total linear momentum of the system is a constant, i.e., m1vm1 +m2vm2 = k1.

Again integrating equation (2.7) implies that:

m1d1 +m2d2 = k1t+ k2, (2.8)

Where k1 and k2 represent the constant of integration. Using 2BP’s description

of the centre of mass, D is defined as:

(m1 +m2)D = m1d1 +m2d2,

mtD = m1d1 +m2d2, (2.9)
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where mt = m1 +m2. We get the derivative of the (2.9) equation and compare it

with the (2.7) equation.

mtḊ = k1 ⇒ Ḋ =
k1

mt

= constant

i.e. linear momentum of the system is constant i.e., m1vm1 +m2vm2 = k1. Again

integrating equation (2.7) implies that:

m1d1 +m2d2 = k1t+ k2, (2.10)

Where k1and k2 represent the constant of integration. Using 2BP’s description of

the centre of mass, D is defined as D:

(m1 +m2)D = m1d1 +m2d2,

mtD = m1d1 +m2d2, (2.11)

where mt = m1 +m2. We get the derivative of the (2.9) equation and compare it

with the (2.7) equation.

mtḊ = k1

Ḋ =
k1

mt

= constant

show that Ḋ = vc is constant.

Subtracting (2.6) from (2.5) from the equations gives:

d̈1 − d̈2 =
Gm2

d3
d+

Gm1

d3
d,

d̈1 − d̈2 = G(m1 +m2)
d

d3
(2.12)

d̈ = β
d

d3
,
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⇒ d̈− β d

d3
= 0, (2.13)

Where a reduced mass is known as β = G(m1 +m2) and d1−d2 = −d, is shown

in figure 2.1.

Multiplying r with the (2.12) equation, we get:

d× βd̈ +
β2

d3
d× d = 0

⇒ d× d̈ = 0, (2.14)

integrating above equation yields:

d× ḋ = H, (2.15)

Where H is integration constant. We should write the equation (2.12),

⇒ d× βd̈ = 0,

⇒ d× F = 0, (2.16)

where,

F = βd̈.

The description of torque and angular momentum is taken from Chapter 2:

T = d× F, (2.17)

After comparison equ (2.14) and (2.15), we obtained:

T = d× F = 0, (2.18)

dL

dt
= 0
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L=conserved.

This means that the angular momentum is conserved.

2.4 Velocity and Acceleration Components of

Radial and Transverse

The velocity components along and perpendicular to the radius vector joining m1

to m2 are ḋ and dθ̇ if the polar co-ordinates d and θ are chosen in this region as

shown in fig (2.2), then,

ḋ = ḋi + dθ̇j, (2.19)

Where the unit vectors î and ĵ are located along and perpendicular to the vector

radius. Thus, by means of equ (2.13) and (2.16),

d× (ḋi + dθ̇j) = d2θ̇k = Lk, (2.20)

Where the unit vector k is Perpendicular to the orbital plane. Which can be

written as,

d2θ̇ = L, (2.21)

Since L is a constant shown to be dubble the radius vector definition rate of the

field. This is a mathematical version of the second law of Kepler. Now, if we use

the scalar product ḋ with the equation (2.11), we obtain equation (2.11) are as

under.

ḋ.
d2d

dt2
+ β

ḋ.d

d3
= 0,

after integrated we have get,

1

2
ḋ.ḋ− m1u

d
= H,

(2.22)

1

2
v2 − β

d
= H, (2.23)
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where H is a constant of integration. This is the sort of energy system preservation.

The H quantity does not include absolute energy, 1
2
β2 is associated with KE, and

−β
d

is associated with PE of the system’s, i.e., the system’s total energy is constant.

Remember the elements of the acceleration vector from celestial mechanics the

radius vector is perpendicular to and along.

Figure 2.2

a = (d̈− dθ̇2)̂i+
1

d

d

dt
(d2θ̇)ĵ,

The above equation is used in (2.11), we obtained,

d̈− dθ̇2 = − β
d2
, (2.24)

1

d

d

dt
(d2θ̇) = 0. (2.25)

We get the following angular momentum integral after further integrating equation

(2.21):

d2θ̇ = L, (2.26)

under such type of substitution,

u =
1

d
, (2.27)
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The exclusion of the time between the equations (2.20) and (2.22) means that:

d2u

dθ2
+ u =

β

L2
. (2.28)

The familiar shape of the equation above is:

u =
β

L2
+B cos(θ − θ0), (2.29)

Where B and θ0 represent integration constants. In the above equation, substitute

u = 1
d
, equation:

1

d
=

β

L2
+B cos(θ − θ0)

d =

L2

β

1 + L2B1

β
cos(θ − θ0)

.

It is possible to write the polar form of the conical equation as:

d =
p

1 + e cos(θ − θ0)
,

where

p =
L2

β
,

(2.30)

e =
BL2

β
.

The orbit of one celestial body around another is defined by eccentricity e. Thus,

1. The orbit is elliptical if 0 < e < 1,

2. The orbit is a parabolic If e = 1,

3. Similarly the orbit is hyperbolic if e > 1.
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Therefore, a conic is the solution to the 2BP, including the first law of Kepler as

a special case. Mathematically can be defined as,

e =
c

a
,

c⇒ is the distance from focus to the center and,

a⇒ represent the semi major axis,

b⇒ represent the minor axis,

where,

a2 = b2 + c2,

c2 = a2 − b2.

2.5 In the n-Body Problem Equations of Motion

The two body issue deals with much of the crucial work in astrodynamics, but

we also need to model the natural world using alternate bodies. Producing 3BP

formulas is the next logical step. The n-body problem is a further generalisation of

three body problems. In general, it takes a fixed number of integration constants to

solve general differential equations of movements in the n-body problem. Consider

a basic gravity question in which over time we have constant acceleration, a(t) =

a0. We get the velocity, v(t) = a0t + v0, if we integrate this equation. Again

integrating provides, d(t) = d0 + v0t+
1
2

and a0t
2. Once again integration provides

d(t) = d0 + v0t + 1
2

and a0t
2 respectively. The initial conditions must be known

in order to finalise the solution. This example is a straight-forward analytical

approach using the initial values, or a function of integration time and constants,

called movement integrals. Unfortunately, this isn’t always the easy scenario. If

initial conditions alone do not provide a solution,The order of differential equations

can be reduced by integrals of motion, also referred to as the degrees of freedom

of the dynamic system, can be lowered by integrals of motion. Ideally, we should

reduce it to order zero if the number of integrals is equal to the order of differential
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equations. Such integrals are constant behavior of the original conditions, as well

as the position and velocity of the motion are constants at any moment, thus the

word constants.

We need 6n integrals of motion for a complete solution to the n-body problem, a

system of 3n second order differential equations. Linear momentum conservation

provides six, energy one conservation, and total angular momentum conservation

three, for a total of ten. There are no rules similar to the first two laws of Kepler to

obtain additional constants, so we are left with a 6n−10 for n ≥ 3 order structure.

These equations defy all attempts at closed-form solutions for n bodies ie., n ≥ 3.

H.Brun, in 1887, proved that there were no other algebraic integrals. We still have

only ten known integrals, although Poincaré later generalised Brun ’s work. They

provide us with insight into the three motions of the body and n-body problems.

Conservation of complete linear momentum ensures that there are no outside forces

in the system.

First, here we set up the n motion equations of large bodies of mass mi(i = 1, 2...n)

whose radius vectors are di from an unexpedited point O, while their mutual radius

vectors are dij where,

dij = dj − di (2.31)

From the laws of movement of Newton and the law of gravitation,

mid̈i = G
n∑

j=1j 6=i

mimj

d3
ij

dij, (i = 1, ...n). (2.32)

Here we notice that dij indicates that the vector between mi and mj is directed

to towards mi and mj, thus

dij = −dji (2.33)

For the n-body problem, the set of equations (2.27) is the necessary motion equa-

tion, G being the universal gravitational constant.



Chapter 3

Planar Central Configurations of

Symmetric Five-Body

In this review work of research [14], we find out the central configuration of the set

of symmetric planar 5-body problems in which (i) four out of five bodies are on

the end of sides(vertices) of a trapezoid and fifth mass take different positions on

the symmetry axis both inside and outside the trapezoid. (ii) All the masses are

placed in such manner in which (m1,m2) and m4 and similarly (m2,m3) and m5

are take collinear; these two sets of collinear bodies form a triangle with m2 is the

intersection between two sets of masses; now we give the form for expressing the

masses ratio and identify the region in which we can choose the positive masses

for make the configuration as a center.

Using newtonian Gravitation the equation of motion for n positive masses is

mir̈i = 5iUi, i = 1, ...n, (3.1)

where the Newtonian potential

U = −G
n∑
i=1

j<i∑
j=1

mimj

|ri − rj|

23
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ri and mi are the position vector and mass of the ith body respectively and G is

the constant of gravitation. The n-body system CC(central configuration)is got,

if the acceleration of ith body is the common scaler multiple of the position vector

of ith body,

i.e.,

r̈i = λri, i = 1, ...n, where λ 6= 0. (3.2)

By Laura/Dziobek equation [24], mi where i = 1, ...n, form non-collinear, planar,

CC is

fij =
n∑

k=1,k 6=i,j
mk(Rik −Rjk)4ijk = 0, (3.3)

where 4ijk = (ri − rj) ∧ (ri − rk). The 4ijk and Rij = 1
r3ij

is the area of triangle.

The equations (3.3) for five bodies reduces to the given below ten equations

f12 = m3(R13 −R23)4123 +m4(R14 −R24)4124 +m5(R15 −R25)4125 = 0, (3.4)

f13 = m2(R12 −R32)4132 +m4(R14 −R34)4134 +m5(R15 −R35)4135 = 0, (3.5)

f14 = m2(R12 −R42)4142 +m3(R13 −R43)4143 +m5(R15 −R45)4145 = 0, (3.6)

f15 = m2(R12 −R52)4152 +m3(R13 −R53)4153 +m4(R14 −R54)4154 = 0, (3.7)

f23 = m1(R21 −R31)4231 +m4(R24 −R34)4234 +m5(R25 −R35)4235 = 0, (3.8)

f24 = m1(R21 −R41)4241 +m3(R23 −R43)4243 +m5(R25 −R45)4245 = 0, (3.9)

f25 = m1(R21 −R41)4241 +m3(R23 −R53)4253 +m4(R24 −R54)4254 = 0, (3.10)

f34 = m1(R31 −R41)4341 +m2(R32 −R42)4342 +m5(R35 −R45)4345 = 0, (3.11)

f35 = m1(R31 −R51)4351 +m2(R32 −R52)4352 +m4(R34 −R54)4354 = 0, (3.12)

f45 = m1(R41 −R51)44 51 +m2(R42 −R52)4452 +m3(R43 −R53)4453 = 0. (3.13)

Here, we recover the central configuration of the isosceles trapezoidal five-body

problem and identify the regions in the phase where it is possible to choose positive

masses which will make the configuration central. We are motivated by the work

of [15] and follow similar ideas to study planar symmetric five-body problem.
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3.1 Geometrical Order of Five Body in Isosceles

Trapezoid Case having non-zero Equations

We investigate The problems include two types of isosceles trapezoidal five-body

problem having four bodies its vertices and fifth body on the symmetry axis which

come outside or inside the trapezoid. The third case which is investigated is

triangular problem in which two pairs of masses and may or may not equal to one

of the four mass is on the perpendicular bisector of that triangle. Suppose m1 = m3

and m4 = m5 are symmetrically placed on the isosceles trapezoid vertices and fifth

mass is on the axis of symmetry of trapezoid.Four masses form a trapezoid see the

figure (3.1)

Figure 3.1: Trapezoidal five body configuration.

while the mass m2 is on the line of symmetry. The position vectors of the

five masses of 5-body problem have position vectors are: r1 = (−1, 0), r2 =

(0,−w), r3 = (1, 0), r4 = (−s, t), r5 = (s, t), where s, t,∈ R. using the values

of, we obtain the corresponding values of Rij,

R12 = R23 = (1 + w2)
−3
2 ,
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8R13 = 1,

R14 = R35 = ((1− t)2 + t2)
−3
2 ,

R15 = R34 = ((1 + t)2 + t2)
−3
2 , (3.14)

R24 = R25 = ((t+ w)2 + s2)
−3
2 ,

8R45 = t−3.

By using the following symmetries we find 4ijk, where i, j, k = 1, 2, ..., 5,

4ijk = −4jik = −4ikj = −4kji,

4ijk = 4jki = 4kij,

4ijk = 0, if i = jor i = kor j = k,

and

4124 = 4235 = (t+ w(1− s)),

4125 = 4234 = (t+ w(1 + t)),

4145 = 4345 = −2t2, (3.15)

4245 = −2t(t+ w),

4123 = 2w.

By the symmetry of the problem we take m1 = m3 and m4 = m5 and using the

values of Rij and 4ijk, where i, j,= 1, 2, ..., 5, in equations (3.4 − 3.13), we have

show that f12 = f23, f14 = f35, f24 = f25, f15 = f34 and the remaining equations

vanish. Consequently, we obtain f12, f14, f15, and f24 as the only unique equations:

f12 = m1h31 +m4h33 = 0, (3.16)

f14 = m1h11 +m2h12 +m4h13 = 0, (3.17)

f15 = m1h21 +m2h22 +m4h23 = 0, (3.18)

f24 = m1h41 +m4h43 = 0, (3.19)
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where

h11 = (R13 −R15)4143,

h12 = (R24 −R12)4124,

h13 = (R15 −R45)4145,

h21 = (R13 −R14)4143,

h22 = (R24 −R12)4125,

h23 = (R45 −R14)4145, (3.20)

h31 = (R13 −R12)4123,

h33 = (R14 −R24)4124 +(R15 −R24)4125,

h41 = (R12 −R14)4124 +(R23 −R14)4243,

h43 = (R24 −R45)4245 .

3.2 Main Results

3.2.1 Theorem

Consider a 5-body non-collinear configuration the position vectors ri of five masses

mi, where i = 1, 2, ..., 5, are:

r1 = (−1, 0),

r2 = (0,−w),

r3 = (1, 0), (3.21)

r4 = (−s, t),

r5 = (s, t).

a. When s = t, there is a continuous family of central configurations determined

by the region R and the function C(t, w) = 0, given in figure (3.1). There are no
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central configurations when w>0.

a. When t = 1 and s ∈ (0, 0.64) there exists a continuous family of Central

Configurations when w<0 or when s>0.64.

3.2.2 Proof of Theorem

3.2.2.1 Proof of Theorem (a)

Consider five bodies of masses mi placed at ri where i = 1, 2, ..., 5. and imposing

the condition s = t, the position vectors given in (3.21) of mi become:

r1 = (−1, 0),

r2 = (0,−w),

r3 = (1, 0), (3.22)

r4 = (−t, t),

r5 = (t, t).

Write the system of linear homogeneous equations (3.16 − 3.19) for the above

arrangement of five masses (i.e., s = t) in matrix form

M =


h411 0 h43

h31 0 h33

h21 h22 h23

h11 h12 h13


Applying \Gauss Elimination Method”, matrix M is reduced to the following

matrix:


h41 0 h43

0 h22 − 1
h41

(h21h43 − h23h41)

0 0 − 1
h41

(h21h43 − h23h41)

0 0 0
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The above system takes the form as below,

m1h41 +m4h43 = 0,

m2h22 −
m4

h41

(h21h43 − h23h41 = 0,

m4(h31h43 − h41h33) = 0,

For the above system to have a non-trivial solution we must have h31h43−h41h33 =

0. This will be considered as a geometric constraint and will be necessary condition

for the existence of trapezoidal central configurations. Setting µ1 = m1

m4
, and

µ2 = m2

m4
, we obtain

µ1(t, w) = −h43

h41

(3.23)

µ2(t, w) =
h21h43 − h23h41

h41h22

=
Nµ2(t, w)

Dµ2(t, w)
. (3.24)

Such that h21 6= 0 and h41 6= 0. Therefore equations (3.23) and (3.24) define

central configuration for the trapezoidal 5-body problem for all masses subject to

the constraint.

C(t, w) = h31h43 − h41h33 = 0. (3.25)

We see from the reduced matrix that (3.17) is not used in deriving µ1 and µ2 which

gives a second constraint:

C∗(t, w) = h43(h12h21 − h11h22) + h41(h13h22 − h12h23) = 0 (3.26)

By using numerical techniques it is confirmed that C∗(t, w) = 0 is satisfied every-

where, where C(t, w) = 0. The constraint C∗(t, w) = 0 has additional solution but

that irrelevant as for nontrivial solution both the constraints have to be satisfied.

Hence we will only use C(t, w) in our analysis. As only positive solutions define

trapezoidal central configuration here therefore we are interested in the regions

where all the masses are positive. The analytical proof of these theorems can be

seen [16].
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3.3 Region where Masses are Positive

To find the central configuration region where µ1 and µ2 are both positive and

C(t, w) = 0, we need to find regions in the tw plane. These region can be seen in

figure (3.2) and figure (3.3) .

0.0 0.1 0.2 0.3 0.4 0.5 0.6

-2.0

-1.8
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-1.0
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w

Figure 3.2: Central configuration region where both µ1 and µ2 are positive.

In this figure t plotted on x-axis and w are in y-axis. This the required region

where central configuration exist. As we have discuss in the earlier stage that

central configuration exist for positive masses. In this cases the shaded region

represent the CC. Moreover if we taking any value form the shaded region the

masses i.e., µ1 and µ2 are positive. Actually this is the region where masses are

positive.
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Figure 3.3: The line corresponds to C(t, w) = 0.

In the above figure we have plot t component on x-axis and w component along

y-axis as shown clearly. The central configuration region where both µ1 and µ2 are

positive, can be found by taking the intersection of the regions found for µ1 and

µ2. This region is given in Figure (3.2) with the geometric constraint C(t, w) = 0.

The continuous family of central configurations is shown by intersection of the

bold line with the colored region where both µ1 and µ2 are positive. In figures

(3.2) and (3.3) are merged together. We can see clearly the central configuration

region when both figured are merged. The intersection of shaded region and bold

line is central configuration region. figure (3.3) just shows increased domain of

figure (3.2).
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Figure 3.4: Figs. 2.1 are merged together
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Figure 3.5: Fig.(i) larger scale
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The CC’s region which is the curve in the shaded region of Figure (3.4) is separately

shown in Figure (3.5). At all points this curve all mass ratios are positive and the

constraints is satisfied.
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Figure 3.6: CCs curve

We have interpolated the CC’s curve shown above with 12th degree polynomial

with help of Mathematica [17] as

w = P (t) := −1.73205 + 7.91088t− 478.155t2 + 12079.9t3 − 168059t4

+ (1.47717× 106)t5 − (8.6506× 106)t6 + (3.45028× 107)t7

(−9.40066× 107)t8 + (1.72083× 108)t9 − (2.02264× 108)t10

+ (1.37816× 108)t11 + (−4.1349× 107)t12. (3.27)

The graph of above polynomial is shown below. And the combined graph of Figure

(3.6) and Figure (3.7) is for t ∈ (0.04 0.5) is also shown below.
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We have chosen some specific values of t ∈ (0.05 0.5) given in the table (3.1).

Using these specific values of t in equation (3.27) we get the corresponding value of

w as shown in the table (3.1). For these values of t and w given in table (3.1) the

mass ratios defined in equations (3.23) and (3.24) are positive and the constraints

given in equation (3.26) is approximately zero. So our CCs holds in t ∈ (0.05 0.5).

Cases t w µ1 µ2 C(t, w)

Case I 0.1 -1.66404 60.6311 57.9326 1.22125× 10−14

Case II 0.2 -1.44846 7.85609 8.56962 −4.7073× 10−13

Case III 0.3 -1.36550 2.4098 3.40424 4.1489× 10−12

Case IV 0.4 -1.42660 1.08267 2.72339 4.38008× 10−12

Case V 0.5 -1.59420 0.77487 3.74963 −4.12704×10−11

Table 3.1: Central Configeration Table for specific values of t ∈ (0.05 0.5)



Chapter 4

Dynamics of Sixth Body

4.1 Introduction

In this section, the dynamics of the 6th particle (infinitesimal mass or secondary

particle not affecting primary motion) are discussed in the plane, moving in acco

rdance with the gravitational field created by the attraction of five primaries mov

ing in a trapezoid configuration of planar isosceles as shown in the previous part.

We call this problem to restricted six-body problem (R6BP). Equation of motion

describe the planer motion of restricted 6th particle mass m6 written from equation

(3.1) will be

r̈6 = m1
r1 − r6

|r1 − r6|3
+m2

r2 − r6

|r2 − r6|3
+m3

r3 − r6

|r3 − r6|3
+m4

r4 − r6

|r4 − r6|3
+m5

r5 − r6

|r5 − r6|3
.

(4.1)

We are now adding a coordinate system with a uniform angular velocity ω rotating

around the centre of mass. In this new rotating frame(non-inertial frame), let (x, y)

be the coordinates of m6. With the following orthogonal system, the equation (4.1)

can be transformed from a fixed inertial frame to a rotating coordinate system,

e1 = eiwt e2 = ieiwt,

36
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where the angular speed is ω and the time is t. The m6 position vector of the

revolving frame is,

r6 = x(t) e1 + y(t) e2, (4.2)

Selecting ω (without generality loss) and taking the derivatives of the first and

second equation (4.2) yields (4.2),

ṙ6 = [(ẋ− y) + i(x+ ẏ)]eit,

r̈6 = [(ẍ− 2ẏ − x) + i(ÿ + 2ẋ− y)] eit. (4.3)

Using the (4.2) equation in the (4.3) equation, the m6 motion equations in the

rotating frame in component form are the equations of motion.,

ẍ− 2ẏ = x−m1

(
x+ 1

r3
61

+
x− 1

r3
63

)
−m4

(
x+ t

r3
64

+
x− t
r3

65

)
−m2

x

r3
62

, (4.4)

ÿ + 2ẋ = y −m1y

(
1

r3
61

+
1

r3
63

)
−m4

(
y − t
r3

64

+
y − t
r3

65

)
−m2

y + w

r3
62

, (4.5)

where mutual distances are described as,

r61 =
√

(x+ 1)2 + y2,

r62 =
√
x2 + (y + w)2,

r63 =
√

(x− t)2 + (y − t)2,

r64 =
√

(x+ t)2 + (y − t)2

r65 =
√

(x+ t)2 + (y + t)2

The equation of motion of m6 moving in the plane of primaries can also be written

as,
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Ux =
∂U

∂x
= ẍ− 2ẏ, (4.6)

Uy =
∂U

∂y
= ÿ + 2ẋ, (4.7)

where the effective potential U(x, y) can pe expressed as,

U(x, y) =
x2 + y2

2
+m1

(
1

r61

+
1

r63

)
+m4

(
1

r64

+
1

r65

)
+
m2

r62

. (4.8)

Comparing the equations (4.4), (4.5) and (4.6), (4.7), we may write equations of

motion of m6 as,

Ux(x, y) = x−m1

(
x+ 1

r3
61

+
x− 1

r3
63

)
−m4

(
x+ t

r3
64

+
x− t
r3

65

)
−m2

x

r3
62

, (4.9)

Uy(x, y) = y −m1y

(
1

r3
61

+
1

r3
63

)
−m4

(
y − t
r3

64

+
y − t
r3

65

)
−m2

y + w

r3
62

. (4.10)

4.2 Equilibrium Solutions

The equations (4.9) and (4.10) do not have a closed-form analytical solution, since

the location of the equilibrium points can be determined by both equations. These

are the position in space where there will be zero velocity and acceleration of the

infinitesimal mass m6, i.e., where m6 appears permanently at rest compared to the

main m1,m2,m3, m4 and m5 respectively. When placed at an equilibrium point

(also called Libration Point / Lagrange Point) a body will apparently remain there.

These solutions can only be found if all rates equal to zero have adequate sufficient

conditions for all rates,

ẋ = ẏ = ẍ = ÿ = 0.

Finally the equations (4.9) and (4.10) take the form,
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Ux = x−m1

(
x+ 1

r3
61

+
x− 1

r3
63

)
−m4

(
x+ t

r3
64

+
x− t
r3

65

)
−m2

x

r3
62

= 0, (4.11)

Uy = y −m1y

(
1

r3
61

+
1

r3
63

)
−m4

(
y − t
r3

64

+
y − t
r3

65

)
−m2

y + w

r3
62

= 0. (4.12)

Equations (4.9) and (4.10) are algebraic equations coupled non-linearly. We need

to numerically solve these equations or sketch contour plots using Mathematica

to determine the zero’s (x, y) or equilibrium points. According to table (3.1), the

description of balance points for RT6BP is given by,

4.2.1 Case I

For case I: t = 0.1, w = −1.66404 and µ1 = 60.6311, µ2 = 57.9326 (see table

(3.1)). Because µ1 = m1

m4
and µ2 = m2

m4
.
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Figure 4.1: Contour Plot for Case I
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We can suppose (without loss of generality) m4 = 1, then from above expression

of µ1 and µ2, one can easily get the value of m1 = 60.6311 and m2 = 57.9326.

Using all these values in equations (4.11) and (4.12) and drawing the contour plot

with help of Mathematica [18] (for Mathematica commands and code please see

Appendix) as
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Ux

Uy

Figure 4.2: Contour Plot for Case I

The position of the equilibrium points is defined by the intersections of the non-

linear equations Ux = 0, (blue) and Uy = 0 (orange). The black dots indicate the

location of the primary masses and red dots represent the position of stable points

for the infinitesimal mass m6 in the plane of primaries m1−m5. (See figures (4.1)
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to (4.3)). In figure (4.3) the black rectangular cell is zoomed in figure (4.2) and

figure (4.3) so that one can easily capture the idea of position of primaries and

equilibrium points inside the rectangle. We got eight equilibrium points for this

Case I. In the following section we discuss the stability analysis of these equilib-

rium points.
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y

L4L5

L6

m2

Ux

Uy

Figure 4.3: Contour Plot for Case I

4.2.2 Stability Analysis of Equilibrium Points for Case-I

In order to carry out a proper study of stability we need to examine the behavior of

m6 that is given a small displacement from an equilibrium position. We will follow
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the standard linearization procedure for linearizing the equation of infinitesimal

mass and carrying out stability analysis [19]. Let the location of an equilibrium

point in the RRSBP be denoted by (x0, y0) and consider a small displacement

(X, Y ) from the point such that x0 +X and y0 +Y . Expanding the Taylor’s series,

then by substituting in equations (4.6) and (4.7), the end result is a set of second

order linear differential equations of the from

Ẍ − 2Ẏ = XUxx + Y Uxy, (4.13)

Ÿ + 2Ẋ = XUxy + Y Uyy, (4.14)

where the quantities Uxx = ∂2U
∂x2

etc., and these derivatives are all constants since

they are evaluated at equilibrium points. The linearized equation matrix form are


Ẋ

Ẏ

Ẍ

Ÿ

 =


0 0 1 0

0 0 0 1

Uxx Uxy 0 2

Uxy Uyy 0 −2




X

Y

Ẋ

Ẏ

 (4.15)

These equations can also be written as in the following matrix form

Ψ̇ = AΨ (4.16)

where

Ψ =


Ẋ

Ẏ

Ẍ

Ÿ

 and A =


0 0 1 0

0 0 0 1

Uxx Uxy 0 2

Uxy Uyy 0 −2

 . (4.17)
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The characteristic polynomial for A is

λ4 + (4− Uxx − Uyy)λ2 + UxxUyy − U2
xy = 0. (4.18)

Eigenvalues of above equation should be estimated. The number of eigenvalues

is equal to the number of state variables. In our case there will be 4 eigenvalues.

Eigenvalues are generally complex numbers. If all of four eigenvalues are pure

imaginary, then the equilibrium point is stable, otherwise it is unstable. In the

following table, case I is investigated:

Equilibrium points Stability

L1(0.23976241322412925, 0.1123721126346707) unstable

L2(-0.23976241322412925, 0.1123721126346707) unstable

L3(0, 0.10570563683271317) unstable

L4(0.24416862067148035, 0.7021319890586841) unstable

L5(-0.24416862067148035, 0.7021319890586841) unstable

L6(0, 0.614711219648052) stable

L7(0, 6.109431860113185) unstable

L8(0, -5.321006254852686) stable

Table 4.1: Stability Analysis for Case 1: t = 0.1, w = −1.66404

4.2.3 Case II

For case II: t = 0.2, w = −1.4484606465700836 and µ1 = 2.4098002600594515,

µ2 = 8.569621485709742 (see table (3.1)). Taking m4 = 1 and following the same

procedure as in Case 1, one can easily get the value of m1 = 2.4098002600594515

and m2 = 8.569621485709742. Using all these values in equations (4.11) and (42)

and drawing the contour plot with help of Mathematica [20] (for Mathematica

commands and code please see Appendix) as
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Figure 4.4: Contour Plot for Case II
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Figure 4.5: Contour Plot for Case II
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The stability analysis of case II is now discussed in the following table, following

the same procedure as in case I.

Equilibrium points Stability

L1(0.5804522038141618, 0.17726655699037705) unstable

L2(-0.5804522038141618, 0.17726655699037705) unstable

L3(0, 0.2199351103848044) unstable

L4(0, 0.5711855322922631) unstable

L5(0, 3.2505700490381577) unstable

L6(0, -1.9962089095551798) stable

Table 4.2: Stability Analysis for Case II: t = 0.2, w = −1.4484606465700836

4.2.4 Case III

For case III: t = 0.3, w = −1.3654982897601258 and µ1 = 2.4098002600594515,

µ2 = 3.404243177846762 (see table (3.1)).
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Figure 4.6: Contour Plot for Case III
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Suppose m4 = 1 and following the same procedure as in Case 1, one can easily

get the value of m1 = 2.4098002600594515 and m2 = 3.404243177846762. For the

following contour plot (for Mathematica commands and code please see Appendix)

using these values in equations (4.11) and (4.12) and drawing the contour plot with

help of Mathematica [21] as
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Figure 4.7: Contour Plot for Case III

Now following the same procedure as in Case I the stability analysis of Case III is

given by:

Equilibrium points Stability

L1(0.5804522038141618‘, 0.17726655699037705) unstable

L2(-0.6028728540838072‘, 0.18622095274533304) unstable

L3(0‘, 0.3293026990503862) unstable

L4(0‘, 0.6965947870002095) unstable

L5(0‘, -1.7886272297115338) stable

L6(0‘, 2.721827016541708) unstable

Table 4.3: Stability Analysis for Case III: t = 0.3, w = −1.3654982897601258
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4.2.5 Case IV

For case IV: t = 0.4, w = −1.4265597661033098 and µ1 = 1.0826720180786977,

µ2 = 2.7233903520695977 (see table (3.1)). Suppose m4 = 1 and following the

same procedure as in Case 1, one can easily get the value ofm1 = 1.0826720180786977

and m2 = 2.7233903520695977 from the expressions of µ1 and µ2. For the follow-

ing contour plot (for Mathematica commands and code please see Appendix) using

these values in equations (4.11) and (4.12) and drawing the contour plot with help

of Mathematica [22] as
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Figure 4.8: Contour Plot for Case IV

In the above figure Ux represent the blue and Uy represent the yellow colour.
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Figure 4.9: Contour Plot for Case IV

Now following the same procedure as in Case I the stability analysis of Case IV is

given in the below table

Equilibrium points Stability

L1(0.7177605877576259, 0.2045771305252147) unstable

L2(-0.7177605877576259‘, 0.2045771305252147) unstable

L3(0, 0.5027520153490956) unstable

L4(0, 0.6854501385873034) stable

L5(0.15545298471717345‘, 0.7620251965667376) unstable

L6(-0.15545298471717345‘, 0.7620251965667376) unstable

L7(0, -1.42) stable

L8(0, 2.6065686150198) unstable

Table 4.4: Stability Analysis for Case IV: t = 0.4, w = −1.4265597661033098
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4.2.6 Case V

For case V: t = 0.5, w = −1.5941967693943297 and µ1 = 0.7748701297751454,

µ2 = 3.749627716706898 (see table (3.1)). Again we suppose m4 = 1 and fol-

lowing the same procedure as in Case 1, one can easily get the value of m1 =

0.7748701297751454 and m2 = 3.749627716706898 from the expressions of µ1 and

µ2. In this case contour plot (for Mathematica commands and code please see

Appendix) are
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Figure 4.10: Contour Plot for Case V
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Figure 4.11: Contour Plot for Case V

Now following the same procedure as in Case I the stability analysis of Case V is

given in the following table

Equilibrium points Stability

L1(0.7908694365676083‘, 0.22964236865830492) unstable

L2(-0.7908694365676083‘, 0.22964236865830492‘) unstable

L3(0.29512268018937554‘, 0.855175610810116) unstable

L4(-0.29512268018937554‘, 0.855175610810116) unstable

L5(0, -1.42) stable

L6(0,0, 2.8552320604711) unstable

Table 4.5: Stability Analysis for Case V: t = 0.5, w = −1.5941967693943297



Chapter 5

Conclusions

We reviewed the CC’s of symmetric isosceles trapezoid for 5BP such that four of

the bodies are on the vertices’s of an isosceles trapezoid and the fifth mass (m2)

can take various positions on the axis of symmetry both outside and inside the

trapezoid. Different cases related to the problem were discussed and it was shown

the existence and non existence of CC’s related to each case. We picked that

CC’s curve figure (3.7) and analyses the motion of infinitesimal body m6 in the

gravitational field of five primaries m1 −m5 for different cases of CC’s discussed

in table (3.1). We also discussed equilibrium points of five different cases. The

stability analysis is also discussed in each case. In Case I-Case V we have got

6, 8, 6, 6 and 8 equilibrium points. Maximum points are unstable but couple of

stable points also exist in each case. Interestingly, all stable points are along the

y-axis on or off the isosceles trapezoid. There are no equilibrium points off the

axes and along x-axis.

51



Bibliography

[1] J. Wisdom and M. Holman, “Symplectic maps for the n-body problem,” The

Astronomical Journal, vol. 102, pp. 1528–1538, 1991.

[2] F. Gabern and A. Jorba, “A restricted four-body model for the dynamics

near the lagrangian points of the sun-jupiter system,” Discrete & Continuous

Dynamical Systems-B, vol. 1, no. 2, p. 143, 2001.

[3] A. Roy and B. Steves, “Some special restricted four-body problemsii. from

caledonia to copenhagen,” Planetary and space science, vol. 46, no. 11-12, pp.

1475–1486, 1998.

[4] J. Mather and R. McGehee, “Solutions of the collinear four body problem

which become unbounded in finite time,” in Dynamical systems, theory and

applications. Springer, 1975, pp. 573–597.

[5] R. Moeckel, “On central configurations,” Mathematische Zeitschrift, vol. 205,

no. 1, pp. 499–517, 1990.

[6] M. Marchesin and C. Vidal, “Spatial restricted rhomboidal five-body problem

and horizontal stability of its periodic solutions,” Celestial Mechanics and

Dynamical Astronomy, vol. 115, no. 3, pp. 261–279, 2013.

[7] M. Hampton, G. E. Roberts, and M. Santoprete, “Relative equilibria in the

four-vortex problem with two pairs of equal vorticities,” Journal of Nonlinear

Science, vol. 24, no. 1, pp. 39–92, 2014.

52



Bibliography 53
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